ENTER FREYA

by J. R. Latasa and I. Marteens
(www.marteens.com, www.moebiusootics.com)
Summary: Freya is a pure, non-hybrid, object oriented programming language, inspired in the
syntactic style of the Pascal lineage of languages. Freya is designed to create applications that

run as first-class citizens in the .NET Framework. This article explains the basic syntactic
features of Freya, and some of the reasoning behind Freya’s specification.

The Delphi Pascal heritage

Object oriented constructions were introduced for Turbo Pascal 5.5, but the big leap came
when Borland announced Delphi back in 1995. In 1997, Delphi 3 added interface types to
the language, and Delphi 4 rounded some edges by adding dynamic arrays, method over-
loading and default parameters. Since then, few changes have been done to Delphi Pascal
as a language.

With the arrival of the .NET framework, Borland faced a big challenge: adapting its more
popular language product for the new framework runtime model, while keeping the com-
patibility with most of the old Delphi’s libraries. We think Borland has done its best in or-
der to keep a minimal compatibility with old Delphi’s code base. We also think this is a very
restrictive constraint to deal with. So, the question we asked ourselves was: how would be a
modern Pascal-derived language if it could be designed from scratch? The answer is a lan-
guage named after the Norse goddess of love: Freya.

Design goals
We have stated three explicit design goals for the new programming language:
1. Freya must be a pure object oriented language, running in the .NET Framework.

But the main consequence is that we can cut off a lot of inherited features that have lit-
tle or no use in an object-oriented world. Some of these features are: first-level proce-
dures, nested procedures, global variables and variant records.

There are more subtle features in Delphi that defy object purity. One of those features,
for instance, 1s the way numeric variables are incremented. Delphi provides an Inc pro-
cedure. Freya couldn’t use Inc, except by turning it into a static procedure from some
global class. We have preferred, instead, to support the widely known ++ operator from
C++/Java/CH#.

2. Freya should respect, as long as possible, the distinct syntactic flavour of Delphi Pascal.

Sure, we have to state first what this flavour is. Some people use Pascal because they
think it’s not as cryptic as the C language family, with all those curly braces, cumula-
tive pluses and other strange thingies. This could be regarded as an advantage... espe-
cially when your code editor lets you type words like initialization in a single breath,
despite your QWERTY keyboard.

But the most decisive characteristic of Pascal is its “split” nature. While most modern
languages, like C#, Java or Eiffel, declare and implement their features in the same
place, Pascal shares with C++ a clear division between declaration and implementation.

There’s another more shameful reason for explaining this chasm... and it has to do in
part with those prehistoric devices once known as magnetic tapes. Pascal, and most
languages from that generation, was carefully designed to allow one-pass compiling.
Have you ever used a forward directive? Magnetic tapes and punched cards were only
partially responsible for this, and part of the blame should be put on the low memory
availability common at those times. Modern languages are compiled by constructing
first an abstract syntax tree in memory, so there’s no need for the dreaded “declare first,
use later” rule.

If we had discarded the one-pass style, we would have ended with a simplified Eiffel
clone on our hands. Freya is the result of respecting as long as possible the one-pass

http://www.marteens.com/freya
http://www.moebiusootics.com/

Enter Freya

The

heritage of Pascal: no need to “declare first”. Nevertheless, class members are imple-
mented in a separate implementation section, which could contain other implementa-
tion details for a class.

3. Freya must fit neatly into the .NET framework as a first-class citizen.

This is a two-way requirement. It means, on one hand, that Freya classes and applications
should be able to use every feature from the Common Language Runtime (CLR) other lan-
guages enjoy. Moreover, these features should be used in a natural way. A clear example of
what we'll be avoiding is the support by Delphi of operator overloading: while Delphi v8
allows it, it forces the programmer to define the operator using the literal name associated
to the operator, instead of the own operator.

On the other side, new features may be added as long as their impact on other .NET lan-
guages is acceptable. Freya classes should be accessible from other .NET programming
languages. We do not pretend to attract programmers to Freya and then keep them prison-
ers as a consequence of using advanced Freya features not supported by the mainstream
languages. As Zen has it: you can hold a coin in your hand by closing your fist, but also by
turning the hand palm up.

The truth is that our third requirement is very demanding. It means that the design of
Freya should not deviate too much from the core .NET object model. But that’s not our goal,
neither... at least for this first version.

entry point: no more programs

We will proceed top-down, starting with the high level syntactic structures. As a matter of
fact, these high level features will endure most of the simplifications needed to make Freya
a streamlined language.

The first victim of the scissors will be the classic program construction. Let’s face it:
program is a relic from the old good structured programming times. The very existence of
program forces Delphi to define three additional keywords and their associated structures:
library and package, in order to match program’s role for Delphi DLLs and component
libraries, and unit, for the modular compilation ... err... unit.

This way, program disappears and it is substituted by a Main static function, as in C#.
The following listing shows a basic Hello World console application in Freya:

using System;
namespace Freya.Hello.World;

implementation
method Main(Args: Array[String]l);
begin
Console.WriteLine('Hello, Freya!');
end;

end.

An anonymous implementation section automatically generates an internal static class, so
the above code 1s equivalent to this other one:

using System;
namespace Freya.Hello.World;

public
_InternalClass = static class
private
method Main(Args: Array[String]);
end;

implementation for _InternalClass is

method Main(Args: Array[String]);
begin

Console.WriteLine('Hello, Freya!');
end;

end.

Enter Freya

OK, this is a little longer than its C# or Pascal equivalents, but this is not the code you’ll be
writing more frequently. Anyway, this is an almost literal translation of the empty console
application template generated by Visual C# 2005.

Though we considered several alternatives to the Main function’s protocol, we found most of
them functionally equivalent to ours, or plainly bizarre. Eiffel applications, for instance,
starts their execution by constructing an instance of a class marked as the system root from
outside of the code. The practical consequences of this design are a bunch of ad hoc classes
with no further goal than serving as the starting point of an application.

Namespaces

Delphi units do not fit well in the .NET framework. Units were designed as the smallest
compilable language module, but there’s nothing alike in .NET. When a .NET project is
compiled, all its source files are merged together before proceeding. There’s a compiled en-
tity below assemblies: the .NET module. But there is a performance penalty when an as-
sembly is divided in physically independent modules and, in any case, modules are neither
a good equivalent for Pascal’s compiled units.

In other words:

1. Delphi identifies units and files.

2. Delphi.NET v8 identifies namespaces with units. That’s plainly wrong. A modest size
component library written in Delphi 8 would contain a namespace for each single unit
in the project. It’s amazing that such a flaw in design were featured by a commercial
product.

3. Delphi. NET v2005 tried to ameliorate this situation, synthesizing the namespace from
dotted unit names by dropping the last identifier. If you compile a unit named X.Y.Z in
Delphi 2005, all its content will belong to a X.Y namespace. This is better, but it is still
just a clever trick to disguise a wrong design decision.

It’s funny that the Delphi 2005 approach is gentler with a C# programmer who uses a
Delphi component, since he only needs to know about the namespace, than with a Delphi
programmer, who’s forced to remember both the namespace and the unit name.

Freya throws away Delphi’s unit structure and conforms to the more natural model so suc-
cessfully featured by C#: namespaces are logical entities not bound to any physical model.
One file may contain more than a namespace, and namespace features can be defined
across more than one file, and even across several assemblies.

A basic Freya source file could be like this:
namespace Freya.Containers;

// Features for the Freya.Containers namespace..

end.'

When more than one namespace is defined in the same file, their closing end’s are consoli-
dated:

namespace Freya.Containers;
namespace Freya.Containers.HashTables;

end..
You could even reopen an already closed namespace in the same file.

Let’s focus now in namespace structure. Although Wirth’s Pascal didn’t support units, the
syntax for this feature is almost the same in all Pascal inspired languages. They all divide
modules in two rigidly shaped parts: an interface and an implementation section. The inter-
face section hosts all public declarations. Among those declarations, we can find class decla-
rations. Inside a class, you will find private, protected and public sections... Now we have
detected a minor inconsistency: why do we use interface/implementation for units, and
public/protected/private for classes? The explanation has to do with the way these lan-

Enter Freya

guages evolved. Unit structure was defined back in the era of Structured Programming.
Visibility sections in classes, as a matter of fact, imitated the corresponding syntax con-
structions from C++.

That’s why, in the sake of uniformity, we propose to abandon interface/implementation
and to substitute them with public/private: public namespace sections in Freya hosts
public declarations, and private is the Freya equivalent of C#’s internal declarations. This
is the general layout of a namespace in Freya:

uses System, System.Data, Freya.DataStructures;
namespace UnitName;
public

MyClass = class

end;.

implementation for MyClass is

end.

This example shows also a more radical departure from the Pascal syntax: visibility sec-
tions inside a Freya namespace can be repeated. This is consistent with the syntax for visi-
bility sections in a class declaration. One use for this feature could be grouping related
public or private functionality in different sections:

namespace RocketScience;

public

// Here go all the classes for
// monitoring the ignition subsystem

public
// The communication subsystem

private
// Any needed private classes or types

implementation for RocketEngine is
// An implementation section for each defined class

end..

There are neither initialization nor finalization sections in a Freya namespace. On one
hand, there are no global variables to be initialised. On the other, static fields from a class
can be initialised by a static constructor.

Type declarations

All direct namespace members in .NET languages are type declarations, contrasting with
classic Delphi Pascal, which allows constants, type declarations, global variables routines
and even labels. There’s no need in Freya to prefix type declarations with a type keyword,
as in Delphi Pascal. There are six kinds of type declarations: enumerations, delegates, in-
terfaces, records, classes and class references. The following excerpt shows how to declare a
simple enumerative type:

// Freya

public
DOW = (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday);

The open parenthesis after the equal sign tells the compiler it is handling an enumerative
type declaration. A more sophisticated declaration could be like this:
// Freya

public
BasicColor = (Red = $0000FF, Green = $00FF00, Blue = $FF0000): Cardinal;

This time, there are explicit values assigned to enumerative constants, and there’s also a
base type hint at the end of the declaration. This feature resembles an already existing C#
construction:

Enter Freya

// C#

public enum BasicColor: ulong {
Red = 0x0000ff, Green = 0x00ff00, Blue = Oxff0000 };

Declaring a delegate type is easier in Freya than in Delphi:

// Freya
public
NotifyDelegate = method (Sender: object);

There’s no of object suffix in the delegate declaration, because there are no first-level pro-
cedures. Of course, you could declare delegates based on functions rather than on proce-
dures:

// Freya

public
AnotherDelegate = method (Sender: object): Boolean;

Finally, we allow type synonyms, a feature not yet supported by C#:

// Freya
public
StringDictionary = System.Collections.Generic.Dictionary[String, String];

The nearest equivalent in C# is a variant of the using clause:
/) C#

using StrDict = System.Collections.Generic.Dictionary<string,string>;

But this definition is only valid inside the file it is included. Freya synonyms, in despite of
the lack of direct support by the CLR, are defined once and can be used as regular types by
any code that references the Freya assembly that includes the definition.

Classes and class members

The most important namespace direct members are class declarations. Class can be de-
clared in any visibility section, public or private, but they must be always implemented in a
private section. This is the syntax for a class declaration:

[abstract | sealed | static] [partial] class [formal-generics][inheritance]
class-members
end;

where the optional inheritance clause uses the same syntax as in Delphi. Genericity is dis-
cussed below.

This example features an overly simplified integer stack class, and it shows how methods
are always implemented in a separate implementation section:

namespace Stacks;
public

IntStack = class

private
Items: Array[Integer];
Count: Integer;

public

ﬁethod Push(Value: Integer);
method Pop;
end;

implementation for IntStack is

method Push(Value: Integer);

begin
// Ignore array capacity and stack overflow
Items[Count] := Value;
Count++;

end;

method Pop;

begin
// Ignore stack underflow
Count--;

Enter Freya

end;

end.

Since Items and Count are just implementation details that affect neither the contract be-
tween the class and its users, nor between the class and its inheritors, they can be moved to
the implementation section, as an alternative:

namespace Stacks;
public

IntStack = class
public

ﬁethod Push(Value: Integer);
method Pop;
end;

implementation for IntStack is

var
Items: Array[Integer];
Count: Integer := 0;
method Push(Value: Integer);
begin
// Ignore array capacity and stack overflow
Items[Count] := Value;
Count++;
end;
method Pop;
begin
// Ignore stack underflow

Count--;
end;

end.

Thanks to this syntax, private items are declared closer to the place they are used. You
don’t need private members to understand how a class interacts with its clients. And, as a
welcomed side effect, the “contract form” of the class gets more compact, and more readable.

You can declare inner types inside a class. For nested classes, records and interfaces you
could declare the whole nested type inside the outer class declaration, or you could provide
a forward declaration and declare the inner type below. Take a look at this example:

namespace Freya.LinkedLists;

public
LinkedList = class[X]
protected
LinkedNode = class
public
Value: X;
Next: LinkedNode;
end;
end;
end.

Things can mess when the inner type declaration is long enough. As an alternative, you
could declare the inner class as follows:

namespace Freya.LinkedLists;

public
LinkedList = class[X]
protected
LinkedNode = class;
end;

Enter Freya

LinkedList[X].LinkedNode = class

public

Value: X;

Next: LinkedList[X].LinkedNode;
end;

end.

Though the full declaration of LinkedNode has been written inside a public section of the
namespace, you can access this class only inside methods from LinkedList and any possible
derived classes.

Visibility
There are several reasons against keeping Delphi accessibility levels. The most important:
Delphi assigns private and protected a totally different meaning than the one assigned by

most important .NET languages. That’s an accident waiting to happen. One of the authors,
moreover, finds the “strict” jargon a joke:

“Ok, guys, we’ll make DontTouchThisButton a private method... well, yes... I mean, we’ll be
strict on this. It’ll be a strictly private resource... and this time I really mean it...”

Inside a type declaration, we allow six different visibility sections: public, protected,
private, internal, internal protected and implementation protected. The first five of
them are interpreted as in C#, and then we introduce an additional modifier:

implementation protected

The order of keywords can be inverted, and their meaning would still be the same:

protected implementation

The new visibility level corresponds to the CLR’s family and assembly: your code is required
to be part of the same assembly and located in a derived class if you want to access an
implementation protected resource. On the other hand, internal protected means family
or assembly, which is a more relaxed requirement.

Instance and static members

.NET classes can have “normal” instance members, which are allocated and access in a per
Instance manner, and static members, which can only be managed using the class name.
Although Delphi already has a very idiosyncratic class method, which could be regarded as
a special kind of instance members to some extent, it didn’t allow for static fields. This is
the solution adopted by Delphi. NET for declaring static members:

// Delphi.NET

type
AClass = class
private
var
// Normal instance fields
Fieldl, Field2: Integer;
Field3, Field4: string;
class var
// Static fields
Field5, Field6: Double;
Field7: Boolean;
private

// The old style is still accepted
Field8: Integer;
protected
// Static method declarations conforms to totally different rules!
class function DoThat(Value: Integer): string; static;

endf

Enter Freya

Static methods and static fields are declared through totally unrelated constructions.
There’s another detail: static implies class for method declarations, so we have a little
redundancy here.

Static members could be seen as normal members of another class, implemented after the
singleton pattern, closely associated to the original class. In this light, when we declare a
class with both static and non-static members, we are really declaring members for two
related classes. This interpretation, by the way, is consistent with the implementation of
other class features as class methods, virtual constructors and class references. If we were
to design a hierarchy around member attributes, the most natural grouping would be
similar to this one:
Class declaration
Instance members
Visibility sections
Static members
Visibility sections

We would separate first instance members from static members, and only then, we would

proceed with categorising by member visibility... i.e., a totally different schema compared
with Delphi. NET schema: visibility first, and only then, the static or instance attribute.

C# and Java solves this problem by explicitly including all modifiers along with the
declared class member. There are no special sections inside a class. Freya uses an
intermediate style, as shown in this example:

MyClass = class(MyAncestor)

private

FNextInstance: MyClass;
FReserved: Double;

public
method PublicInstanceStuff;

static internal protected
FNumberOfInstances: Integer;
FFirstInstance: MyClass;

static public

method NumberOfInstances: Integer;
property Wow: WhoCares;

end;

One of the advantages of this syntax is that you can still mimic the C#/Java’s way. This
class declaration is valid Freya code:
MyClass = class(MyAncestor)

private FNextInstance: MyClass;
private FReserved: Double;

public method PublicInstanceStuff;

static internal protected FNumberOfInstances: Integer;
static internal protected FFirstInstance: MyClass;

static public method NumberOfInstances: Integer;
static public property Wow: WhoCares;
end;

This way, you’ll have an easier time if you ever need to translate Java or C# code to Freya.
You could start leaving one explicit visibility section for each class member, and leave
grouping until you find the time.

Methods

Despite the removal of the static directive from method declarations, there remain some
inconsistencies with the rest of method directives in Delphi. For instance, Delphi requires
an abstract method to be declared both virtual and abstract (in this order!). Freya’s
binding modifiers for methods are mutually exclusive, and only one of them, at most, is
allowed for a given method declaration. Recognised binding modifiers are:

1. virtual: It’s used the first time a virtual method is introduced in a class hierarchy.

Enter Freya

2. abstract: It’s an alternative to virtual, and it means that the method has no imple-

mentation yet. Of course, an abstract method is always a virtual method.

override: 1t’s used when redefining a virtual method in a derived class.

4. sealed: A virtual method introduced in an ancestor is redefined for the last time, and it
cannot be overridden in a class derived from the current one.

w

Another independent method modifier is new, which can be used alone or combined with
virtual or abstract. It has the same meaning as in C#, and it’s used when a new method
declaration masks a similar declaration inherited from the ancestor. This is the full syntax
for a method declaration in Freya:

method method-identifier
[parameters][: return-typel; [modifiers ;]

Since binding modifiers are mutually exclusive, you can only have two modifiers at most for
a single method. The order of the modifiers is irrelevant: new virtual is exactly the same
as virtual new.

There is no overload directive in Freya, and it’s important to understand why. Delphi 4 was
forced to introduce an explicit overload directive to keep backward compatibility with code
and tools. If we use a traditional linker, overloaded methods require name mangling, a
technique that adds the encoded method signature to the original method name. Freya has
no compatibility issues to address, but even more important: the own CLR supports directly
method overloading, without resorting to name mangling.

Properties and events

Freya is a component-oriented language, and it must provide first-class support for proper-
ties and events. Our goal in this area is to simplify the declaration and implementation of
these features. This simple example shows how properties are declared in Freya:

Button = class(Control)

public

property Caption: string;
end;

Delphi, unlike C#, requires the programmer to provide explicit accesors for each property. If
you want to declare a Caption property in Delphi, you’ll have to declare separate methods
with names like GetCaption and SetCaption, at least in the more general case. This re-
quirement implies extra typing and unneeded complexity. Freya, on the other hand, as-
sumes that properties allows reading and writing by default, and avoids the explicit decla-
ration of read and write accesors.
Nevertheless, you have to provide those special methods later, in the class implementation:
implementation for Button is

property Caption: string;

begin

endf

property Caption(Value: string);

begin

endf

Although both “methods” share their names, the former is easily identified as a function,
and it provides the implementation of readings. The latter has no return type, so it neces-
sarily implements the write access for the property.

We could also declare read only properties, by including the readonly attribute:

IntStack = class
public

broperty Top: Integer; readonly;

Enter Freya

property IsEmpty: Boolean; readonly;
end;

This time, Freya only allows a read accesor implementation:
property IsEmpty: Boolean;
begin

Result := Count = 0;
end;

Again, since the accesor returns a value, it should be evident we’re dealing with the read
accesor. Write only properties are not allowed in Freya, since this restriction would defeat
the very concept of property.

Another useful feature is the automatic implementation of properties as fields. If you
declare a property and you don’t provide access methods for the property, Freya assumes
you want an automatic implementation, using a private hidden field:

public

MyClass = class

public

constructor MyClass;

property A: Integer; readonly;
property B: String;

end;

implementation for MyClass s

constructor MyClass;

begin

A = 1111;

B := '"1111"';
end;

Since there are not explicit access methods for properties A and B, they are internally
implemented via fields. Property A is declared readonly. However, when you access a
property with no explicit access methods from inside the declaring class, the compiler
translate property references as field references. That’s how you can still initialize A inside
the constructor: actually, the assignment is done on the field. By the way, this is how
events with automatic implementations are handled both by C# and Freya.

In contrast with C#, Freya allows both named and anonymous indexers. This is how an
anonymous indexer property is declared:

Dictionary = class[Key, Value]
public
property Dictionary[K: Key]: Value;

end{

Note that we use the class name for the default class indexer. The implementation of these
properties is predictable, once you know how scalar properties are implemented in Freya:

implementation for Dictionary[Key,Value] 1is
property Dictionary(K: Key): Value;
begin
endf
property Dictionary(K: Key; V: Value);
begin
end;

Events are even easier to declare:

StackEvent = method (Sender: object; E: EventArgs);

IntStack = class

public

event Pushing: StackEvent;

10

Enter Freya

event Pushed: StackEvent;
end;

If we don’t provide accesors, Freya generates its own internal implementation. But we can
provide our own accesors:

implementation for IntStack is

event Pushing.Add(Value: StackEvent);
begin

endf

event Pushing.Remove(Value: StackEvent);
begin

end{

As all .NET languages rule, you have to provide both an Add and a Remove accesor when
you decide to explicitly implement an event.

Constructors

Delphi Pascal is a language with named constructors. On the other hand, the CLR only
allows anonymous constructors: all constructor methods should name .ctor, and they must
be distinguished only by their signatures. If we had to allow named constructors in Freya,
we should add dummy hidden parameters to their declarations, in order to enforce distinct
signatures for them all, if needed. That would translate into an unacceptable toll at
runtime, so Freya constructors have no names.

This code fragment shows a class with two overloaded constructors:

IntStack = class

constructor;

constructor(Capacity: Integer); // No overload directive!
end;

In their shortest forms, neither constructor declarations nor implementations require a
name. However, you can use the class name as an acceptable alternative:
IntStack = class
constructor IntStack;

constructor IntStack(Capacity: Integer);
end;

Both alternatives are equivalent. In long code listings, it may be useful to repeat the class
name in constructors. We're following a general principle, already found in other popular
languages as C++: whenever there’s a need for an anonymous feature at the class level, the
feature is actually represented using the same name as the class. C#/C++ cannot simply
drop the identifier because they have no syntactic markers such as constructor, iterator
or method.

There’s a difference between C++ and Freya, regarding the implementation of constructors.
In C++, the class name is repeated in the constructor signature:

IntStack::IntStack(int capacity) /) C++
But this is a consequence of C++’s hybrid nature. Since there are no first-level procedures

in Freya, and also as a consequence of having a distinctive marker for constructors, we can
avoid repeating the class name:

constructor IntStack(Capacity: Integer); // Freya
begin

Items := new array[Integer](Capacity); // More on this soon..
end;
constructor: Self(128); // Droping the class name
begin
end;

The second constructor is implemented with a call to another constructor from the same
class. The syntax for calling a parallel constructor, as before, resembles the syntax used in

11

Enter Freya

C++ for this task. Of course, a constructor can call explicitly an inherited constructor, like
this one:

constructor TForm(AOwner: TComponent): Inherited(AOwner);
begin
end;

Please note that Inherited is no longer a keyword. Inherited and Self play a similar syntac-
tic role and both of them are object references.

All these constructors initialise new instances from the class. Freya also supports class con-
structors, for initialising static fields. Class constructors cannot be called explicitly, and you
can have only one class constructor per class, with no parameters. Since they are an im-
plementation feature, they are not declared with the class declaration, but are directly im-
plemented inside the implementation section of the class.:

namespace MathTools;
public

MathTools = class
static public

Pi: Double; readonly;
end;

implementation for MathTools is
class constructor MathTools;
begin
end{
end.
You can also drop the class name when implementing a class constructor:
implementation for MathTools is
class constructor;
begin
endf

end.

Instantiation

As you have already seen, Freya uses the new operator in order to create class instances, in
a very C# fashion. That’s a consequence of having unnamed constructors:

var L: Resistor;
begin
L := new Resistor(45000);

end{

Freya provides extended instantiation syntax to simplify instantiation and initialization.
Frequently, we need to create an object instance and perform some assignments to its
properties and fields in order to complete the initialization:

var DS: DataSet;

begin
DS := new DataSet('MyDataSet');
DS.CaseSensitive := false;

end}

We can merge the whole initialization pattern in a single instruction:

var DS: DataSet;
begin
DS := new DataSet('MyDataSet', CaseSensitive := false);

end}

12

Enter Freya

Field and property initializers may follow proper parameters in a constructor call,
resembling the named parameters feature found in some other languages. In the following
example, a call to a parameterless constructor is followed by two property initializers:

var P := new Point(X: 0, Y: 0);
As the above example shows, you can also use a semicolon to separate the field or property

name from the initialisation expression.

Local variable declarations

Freya allows inline local variable declarations, in true C++/C# fashion. Consider this:

var L: Resistor;
begin
L := new Resistor(45000);

end{

First, we declare a variable using a type descriptor. When it’s time to create an instance for
this class, the type name must be repeated. Freya accepts this alternative:

begin

var L := new Resistor(45000);

var C: ETlectricComponent := new Resistor(1000);
end{

The variable declaration has been merged with the initialization. In the first instruction,
the variable’s type is inferred from the right expression’s type, as in C# 3.0. You could also
provide an explicit type for the local declaration, as in the second instruction. In this case,
we assume ElectricComponent is an ancestor of Resistor, or an interface type implemented
by the latter.

Of course, the new var statement can use any kind of expression for its initializer
expression:
begin

var I := 0;
var S: String := I.ToString;

end;.

Local variables declared by a var statement are only accessible inside the same block they
are declared, and from the declaration point on:

begin
begin

// Access to I is not allowed here.
var I := 0;
// Access to I is allowed from here on.

énd;
// Access to I is not allowed here.
end;

We can even merge block declaration and local variable declaration:

begin
// Variable type is inferred:
with var I := 0 do
begin
end;
// Variable type is explicitly declared:
with J: Integer := 34 do
begin

end;.

13

Enter Freya

// Several variables declared in the same block:
with I: Integer :=0, var J :=I1 + 1 do
begin

end; .
end;

Freya’s with is by no means related to Pascal with.

Genericity

14

Generic types are supported by the CLR in .NET v2.0. Our specification runs along with
C#’s in most aspects. We have only changed some minor syntactic elements. For instance,
Freya uses square brackets for enclosing both formal and real type parameters, instead of
angular brackets. Consider this C# type reference:

Stack<Stack<int>> /) C#
The two closing angular brackets can be confused by the lexical analyser with a C/C++/C#
right shift operator. Of course, Freya could use shr and shl for bit shifting, as in Delphi,
but even then, angular brackets have no other use in Pascal. Fortunately, there are other

languages from the Algol/Pascal family which support genericity, and most of them use
square brackets for this purpose:

Stack[Stack[Integer]] // Freya

Another syntactic enhancement can be applied when a generic class depends on just one
parametric type. When instantiating a type with real parameters, you could use the X of Y
syntax, like in old Pascal’s array of Y or set of Y-

var
S1: Stack of Integer;
S2: Stack[Integer];
Al: Array of Integer;
A2: Array[Integer];

This variant cannot be used when there are two or more type parameters, as this example
shows:

ALXLY1, 7]
A[X of Y, Z] // Ok

If we attempt to substitute the outer brackets in the previous example with our alternative
syntax, we end up with an ambiguous construction:

Aof Xof Y, Z // Error!

The of construction has right associativity. The following type reference:
Array of Array of System.Integer

is interpreted as:
Array[Array[System.Integer]]

You cannot use of in association with the new operator:

A := new Array of X(35); // Errorl!!!
A := new Array[X](35); // Ok
A := new Array[Set of Byte](2); // Ok again

Freya implements the same feature set as C# and Visual Basic.NET. For instance, it
supports constrained genericity:

IHashable = 1interface
method Hash: Integer;
end;

HashTable = class[X(IHashable)]
end{

Note that we avoid a separate constraint section, as the where clause from C#. You could
require a real type parameter either to have a given class as its ancestor, or to implement

Enter Freya

one or more interface types, or to have a default public constructor, or a combination of
these requirements:

MyGenericClass = class[class X(IMyIntf, new)]
end;'

The above example shows a generic class that can only be instantiated with class types
implementing the IMylIntf interface and having a default constructor.

Another important feature related to genericity is the support for nullable types. Nullable
types are value types constructed from non nullable value types. They add one more value
to the base type domain: the nil constant. They are useful for emulating the SQL
expressions semantic:
var age: Integer? := 30;
if age.HasValue then
Console.WriteLine(age.Value);
age := nil;
if not age.HasValue then
Console.WriteLine('0Ok!");

Freya provides a binary coalescence operator:
Console.WritelLine(age ?? 0);

This operator returns its first operand when it does not contain a null; otherwise, it returns
the value from its second operand. Through this operator was designed along with nullable
types, you can use it with traditional reference types, as in this example:

var String: s :
var String: t :

nil;
s ?? String.Empty;

Freya also implements lifted operators for handling expressions involving nullable types:

var x: Double? := nil, y: Double? := 1;
var z: Double? := x + y;
Console.WriteLine(z);

Any expression containing at least one null value, automatically evaluates as null.

lterators

Iterators were added to C# in version 2.0, for simplifying the design and implementation of
the IEnumerable interface type. This interface helps to define open iterators, which can be
used directly, by calling the individual methods from this interface, or indirectly, by using
the foreach statement in C#. In C# version 1.0 and 1.1, you had to create a class which
implemented IEnumerator and provided state for iteration.

This is an elementary example of a C# 2.0 iterator:

// C# v2.0
public static IEnumerable<int> Range(int lo, int hi)

{
while (1o <= hi)
yield return To++;

}
And this is how we would use this iterator using a foreach statement:

/7 C#
foreach (int i in MyClass.Range(0, 10)) {

}
The Freya equivalent for the previous iterator is implemented this way:
iterator MyClass.Range(Lo, Hi: Integer): Integer;
begin
for Result := Lo to Hi do

Yield;
end;

Freya use a variant of the for statement for consuming the iterator:

15

Enter Freya

for I in MyClass.Range(0, 9) do
begin

end;'

There is enough syntactic information to tell between a traditional for statement and a loop
based on an iterator.

Freya iterators have several advantages when compared to C# iterators:

1. We have added a new executable feature type: iterator, as we already have method,
constructor and destructor. Thanks to this, iterators can be easily identified by the
programmer. On the contrary, you have to watch yield statements and method return
types in order to locate iterators in C#.

2. Freya iterators are not linked to a specific implementation technique, as C# iterators
are. However, since there is an exact translation from a Freya to a C# iterator, the for-
mer could be, at least, as efficient as the latter. But you could event implement a Freya
iterator as a closed iterator, if needed.

3. There’s no need for a yield break feature, as in C#. You could end iteration with an
Exit procedure call, as in a normal procedure.

Another possibility is to declare an anonymous iterator for a class. For instance:

LinkedList = class[X]
public
// Constructor declaration included for comparison
constructor LinkedList;
// This is the anonymous 1iterator
iterator LinkedList: X;

end{
As with other similar features, like constructors, an anonymous iterator is declared using
the class name. When it comes to its implementation, the class name is included only once:
iterator LinkedList: X;
begin
end{
Freya even allows you to declare a static anonymous iterator for a class. As a matter of fact,
enumerative types already have a predefined static iterator in Freya:

for var day in DayOfWeeks do
// ... whatever ...

For a dense enumerative type, the previous statement is translated this way:

for var day := DayOfWeeks.First to DayOfWeeks.Last do
// ... whatever ...

But even for a sparse type, we could still use the static iterator. The internal implementa-
tion uses an internal table created by the compiler for this purpose.

Exceptions

There are no great differences between Freya and Delphi on exception support. Freya in-
troduces a new try/fault statement:

try
DoWhatever;
fault
CleanIfError;
end;

The previous statement is semantically equivalent to this one:

try
DoWhatever;
except
CleanIfError;

16

Enter Freya

raise;
end;

These statements could be used with common patterns like explicit transaction processing:

trans := connection.BeginTransaction;
try
Mod1ifyDatabase;
trans.Commit;
fault
trans.Roll1back;
end;

The rationale behind #ry/fault is the fact that, in a well written application, most
trylexcept statements already include a raise as the last statement of the except clause.
This fact is also recognised by .NET, which supports a fault block in its Intermediate Lan-
guage.

There’s another little difference in how exceptions traps are declared:

try
Statementl;
Statement2;

except E: CryptoException do
Statement3;
Statement4;

except E: IOExceptions do
Statement5;

except
MoreStatements;

end;

The original Delphi syntax is absurd: the try/except statement follows the modern block
pattern, but the old style is restored when you have to write an embedded on/do clause for
trapping exceptions by class.

Freya allows try/except/finally blocks:

try
FirstAttempt;
except
SecondAttempt;
finally
CommonCleaning;
end;

This compound exception block will be seldom used, but it’s kept in order to make code
translation from other .NET languages easier.

Exceptions in Freya are raised as in Delphi:

raise new ApplicationException('Uh-oh');
raise alreadyCreatedInstance;

The first instruction raises an exception and creates a new instance for holding information
on why this exception has been fired. The second instruction uses an already existing in-
stance as the exception object.

Deterministic destruction and block declarations

NET languages heavily rely on the IDisposable pattern in order to achieve deterministic
disposal of resources other than memory. C# introduces the using statement for coding this
pattern. We have also added a using statement, with two variants. Most of the times,
using declares and initializes a local variable

using X: MyClass := new MyClass do

WhatEver;
// X is not available here

The translation depends whether MyClass implements the IDisposable interface or not.
When the answer is yes, the translation looks like this:

17

Enter Freya

begin
var X: MyClass := new MyClass;
try
WhatEver;
finally
IDisposable(X) .Dispose;
end;
end;

// X is not available here

This is how C# interprets a using statement, but Freya also allows this statement even if
MyClass does not implement IDisposable. In that case, no try/finally block is generated,
and the statement just introduces a block with a local variable declaration:

begin
var X: MyClass := new MyClass;
WhatEver;

end;

// X is not available here

We can also drop the explicit type declaration, to allow the compiler to infer the type of the
local variable:

using var X := new MyClass do
WhatEver;

If the code enclosed by using does not need to access the declared variable, we could drop
the variable declaration:

using new MyClass do
WhatEver;

This variant, also accepted by C#, only makes sense if MyClass implements IDisposable. In
that case, the compiler declares a hidden variable for disposing the new instance at the end
of the block:

begin
var _hidden: MyClass := new MyClass;
try
WhatEver;
finally
IDisposable(_hidden) .Dispose;
end;
end;

Once we have accepted a limited form of nested scope for local variables, it makes sense to
add a similar feature to for statements:

for N: TreeNode 1in ATree.PreOrder do
begin

endf

for I: Integer := 0 to Count - 1 do
begin

endf

Type inference is also permitted here:

for var N in ATree.PreOrder do
begin

endf

for var I := 0 to Count - 1 do

begin

end{

Operators and compound assignments

18

The C programming language, and C++ later, was designed with performance as one of
their primary goals. If performance is vital for a language which compiles to native code,

Enter Freya

it’s even important when you have a virtual machine as the target, no matter how opti-
mised it might be. This way, most of the performance advantage gained by special opera-
tors and assignments is still present in C#.

On the contrary, Pascal inspired languages have always put the emphasis on readability
and simplicity. Anyway, Delphi Pascal already includes special operations resembling some
of the special operators from C/C++:

Inc(TotalQty, Qty); // Delphi

Include(days, DOW.Monday);
days := days + [DOW.Monday, DOW.Tuesday];

With .NET arrival, Delphi.NET had to extend some of these methods in order to support
multicast events:

Include(buttonl.Click, buttonlClick); // Delphi.NET

One of the problems with Delphi’s approach is that Include, Exclude, Inc and Dec must be
interpreted as global first-level procedures, a feature not supported by Freya. Another
problem has to do with uniformity: Inc can be used with integer types, but not with real

types.

These are some of the reasons why Freya incorporates some of the C# special operators and
compound assignments. We have now increment and decrement statements, substituting
the monoparametric Inc and Dec versions:

Count++; // Freya
Remaining--;

Notice that we have said statement, not expression. This is not allowed in Freya:

if Count++ < MAX then // Invalid in Freya!!!
Remaining--;
Another restriction is that we have only included the suffix form. Since the increment and
decrement statements can be applied to object paths, which are best read from left to right,
it’s more natural to write the increment operator at the right, after navigating to the last
path element.

If we allow post-increments and decrements, it’s also natural to allow compound assign-
ments as substitutions for Include/Exclude and the two parameters versions of Inc and Dec:
buttonl.Click += buttonlClick; // Freya

days += DOW.Monday;
days += [DOW.Monday, DOW.Tuesday];

Note that we have two overloaded versions for the += operator, when applied to a set vari-
able. Again, compound assignments are not considered expressions.

Once we have compound assignments for addition and subtraction, there’s no reason to
exclude other compound assignment operations... except for one thing: how should we write
a compound assignment involving a remainder operation, which is performed in Delphi
with the traditional mod operator? Our answer is to allow synonyms for those literal Pas-
cal operators:

i =1 mod 2; // Still valid in Freya

i=1 % 2; // Now, this is also valid

i %= 2; // A valid compound assignment

ii=1\ 2; // A valid synonym for the integer division (div)

We have been less kind with the bit shift operators from Delphi: shr and shl. C’s >> and <<
operators are a lot more expressive, and they don’t assume you are a native English
speaker.

There has been a major change regarding the very unpractical operator precedence from
Pascal. Now, logical operators have been moved to the appropriated level, so you can write
expressions like this:

while Current < Input.Length and Char.IsWhiteSpace(Input, Current) do
Current++;

19

Enter Freya

We have also introduced two new logical operators, with lower precedence than
comparisons: the logical implication and the logical equivalence.
requires
Active -> RowCount >= MINROWS;
The new -> operator stands for the logical implication, and the previous expression can be
rephrased as “when Active is true, RowCount should be greater or equal to MINROWS”. The
Delphi equivalents are:

not Active or (RowCount >= MINROWS)
Active <= (RowCount >= MINROWS)

The first definition is preferred, because it allows short circuit evaluation. The precise defi-
nitions for the new operators are:

A-> B
A <> B

not A or B
A=B

Logical equivalence doesn’t allow short circuit evaluation: the operator always needs to
evaluate both operands. These two operators are a must when writing assertions, a feature
we’ll cover immediately. Eiffel, the paradigmatic language with assertions, has an implies
operator, but we have preferred a symbolic representation, saving two reserved words.

There are other minor enhancements in order to make Freya programming an enjoyable
task. For instance, we have introduced a compound operator for the negation of the set
membership test:

repeat
untii Input[Current] not in ['0'..'9'];

It looks like SQL, but we are sure it will be welcomed by most Freya programmers.

User defined operators and conversions

Freya implements first class support for user defined operators. You can use both the
method and operator markers when defining a symbolic operator:

// The ortodox syntax, identical to (#’s.

operator+(cl, c2: Complex): Complex;

// The substraction operator is a symbolic one, so “method-“ is ok.
method-(cl, c2: Complex): Complex;

The operator marker is the only option when the operator name is an identifier, as in user
defined conversions:

operator Explicit(C: Complex): Double;

begin
Result := c.Re;
end;
operator Implicit(Value: Double): Complex;
begin
Result := new Complex(Value, 0);
end;
Assertions

20

You can find a full description of the philosophy behind assertions and programming by
contract in Bertrand Meyer’s Object Oriented Software Construction. Even though most of
Freya’s assertions support has been borrowed directly from Eiffel, some details had been
adjusted in the translation process.

The first issue has to do with the way Pascal splits declaration from implementation.
Where does pre- and post-conditions belong? Let’s start with preconditions. Since precondi-
tions must be verified by the caller, at least in theory, they must be available to it. A pre-
condition for a public method, for instance, must be declared along with the method decla-
ration, and may only refer to other public features from the class. A precondition for a pro-
tected method may only refer to other public or protected features, and it also must be de-

Enter Freya

clared along with the method declaration. So, this solves the location for declaring precondi-
tions: they must be always declared inside the class declaration. For instance:

Stack = class

public

method Pop;
requires not IsEmpty;

end{

Post-conditions are more complex. You can have public or declared post-conditions included
in the class declaration. These declared post-conditions may only refer to features with
same or wider visibility attribute. Declared post-conditions are useful to the class clients,
because they explain how the class does its work. Of course, if one of these post-conditions
fails, it would mean a failure from the class code, and there’s nothing the client could do,
except sending a bug report to the technical support. This is an example of a declared post-
condition:

Stack = class

public

method Push(V: X);

ensures not IsEmpty,
Top = V: push_on_top;

end{
But there are non-declared post-conditions too, like this one:
method Push(Value: X);
begin
Items[Count] := Value;
Count++;
ensures

Count = old Count + 1;
end;

This post-condition refers to some internal features, as the number of items in the stack,
and they must be declared after the method implementation, as shown.

Properties pose another problem related to assertions. Each property may have two asso-
ciated methods for its implementation. This way, a read/write property could support two
different preconditions and postconditions. Non public postconditions must be stated when
implementing the corresponding accesor, but there’s still a problem when read and write
accesors needs different preconditions, and when they ensures distinct public postcondi-
tions.

property Caption: string;

requires Value <> '' for write;
ensures Value <> '' for read;

Assertions may have a name, as this example shows:

property Top: X; readonly;
requires not IsEmpty: not_empty;

Instead of an identifier, you can associate a string literal to the assertion:

property Top: X; readonly;
requires not IsEmpty: 'Cannot ask for Top when the stack is empty';

This rather long example summarises most of the features already discussed:
namespace Freya.DataStructures.Stacks;
public

Stack = class[X]

protected
Items: Array[X];
Count: Integer := 0;

public
constructor;
constructor(Capacity: Integer);
iterator Stack: X;

21

Enter Freya

property Top: X; readonly;
requires not IsEmpty;
property IsEmpty: Boolean; readonly;
method Pop;
requires not IsEmpty : not_empty;
method Push(V: X);
ensures not IsEmpty,
Top = V : push_on_top;
invariant
Count >= 0;
end;

implementation for Stack[X] is

constructor(Capacity: Integer);
begin

new Items(Capacity);
end;

constructor: Self(128);
begin
end;

iterator: X;
begin
for I: Integer := Count - 1 downto O do
begin
Result := Items[I];
Yield;
end;
end;

property Top: X;
begin

Result := Items[Count-1];
end;

property IsEmpty: X;
begin

Result := Count = 0;
end;

method Pop;
begin

Count--;
end;

method Push(Value: X);
begin
Items[Count] := Value;
Count++;
ensures
Count = old Count + 1;
end;

end.

As you can see, class invariants can be declared using a separate section inside the class
declaration.

Interfaces as contracts

22

A very interesting interaction takes place between interface types and assertions. Inter-
faces are abstract contracts that don’t impose any constraint regarding the physical layout
of the implementers. Since assertions are a formal technique for contract specification, it
makes sense to associate assertions to interface declarations:

IStack = interface[X]

property Top: X; read;
requires not IsEmpty;

property IsEmpty: Boolean; readonly;

method Pop;
requires not IsEmpty : not_empty;

Enter Freya

method Push(V: X);
ensures not IsEmpty : push_fills_stacks,
Top =V : push_goes_top;
end;

Every class implementing IStack must honour these assertions. The implementing class
does not have to repeat the assertions in its declaration, since they are added automatically
by Freya.

There is a small but interesting detail in how explicit interface implementations are writ-
ten in Freya:

ISource = interface
property IsDone: Boolean; readonly;
method NextChar: Char;
event NewlLine: NewLineEventHandler;
end;

SourceFile = class(ISource)
endf

Despite what the ellipsis could suggest, in a complete example there would not be any hint
in the class declaration about the explicit implementation of ISource. The interface imple-
mentation would be totally confined to the implementation block:

implementation for SourceFile is
property ISource.IsDone: Boolean;
begin
endf
method ISource.NextChar: Char;

begin

endf

end..

There are no hints in the class declaration about how ISource is implemented, but that’s
fine: these are implementation details, and the class contract should not mess with them.
Something similar happens when implementing the event declared by the interface type:

event ISource.NewLine.Add(Value: NewlLineEventHandler);
begin
end;

An extreme case of this design principle has to do with implementing interfaces by delega-
tion, a trick borrowed from Delphi, not allowed in C#:

CustomerForm = class(System.Windows.Forms.Form, IPrintable)
private
Grid: SuperbGridView; // This class implements IPrintable

end;.

The link between the Grid field and the IPrintable interface is relegated to the class’ im-
plementation block:

implementation for CustomerForm is

interface IPrintable = Grid;

end..

Once more time, there are no hints in the class declaration about how is the interface im-
plemented.

23

Enter Freya

Current state of Freya implementation

24

We already have a working compiler for Freya. It already implements all features found in
NET 1.0-1.1, almost all features from .NET and C# 2.0 and even some novelties from the
C# 3.0 specification. The compiler is implemented with pure C# 2.0, so we still have the
possibility to translate the entire source to Freya, if needed.

The parser is a LALR(1) one. Its tables are generated with GOLD Parser, a freeware tool
developed by Devin Cook, and available at www.devincook.com. We use the XML export
command from GOLD Parser to generate our own parsing tables for C#. These tables are
interpreted by a custom parsing engine created by the authors.

The parsing engine builds an Abstract Syntax Tree from the input source, and the rest of
the compiling passes are performed on this data structure. In a first semantic pass, type
references are bound to external types defined by the referenced CLR assemblies. A second
pass takes computes types for expressions, bind overloaded features and performs most
semantic checks.

Our compiler generates code using Reflection.Emit. This has been a mixed blessing, since
there found several problems with these classes, especially when generating generic types
and multidimensional arrays. We are generating the best possible code in most cases, and
we pretend to add as many sensible optimizations as possible.

Ian Marteens
1an@intsight.com

abstract
and

as

begin

case

class

const
constructor
destructor
div

do

downto
else

end
ensures
event
except

fault
finally

for

goto

if
implementation
in
interface
internal
invariant
is

iterator
loop
method
mod
namespace
new

APPENDIX A: FREYA RESERVED WORDS

nil

not

of

old
operator
or

out
override
private
property
protected
public
raise
readonly
record
repeat
requires

Special procedure identifiers: Exit, Break, Continue, Yield.
Special object references: Self, Inherited.

Special variable: Value (only allowed in a property’s declared pre- or post-condition).
Special event access indicators: Add, Remove (only in explicit event implementations).

shl
shr
sealed
static
then
to

try
until
using
var
virtual
while
with
xor

25

APPENDIX B: A SIMPLE SORTED BINARY TREE IN FREYA

using System;

namespace Freya.DataStructures.Trees;

public
BinaryTree = class[X(IComparable)]
protected
TreeNode = class
public
Value: X;

Left, Right: TreeNode;

constructor TreeNode(Value: X);
method Contains(Value: X): TreeNode;
iterator Preorder: X;

end;

Root: TreeNode;
public
method Add(Value: X);
method Contains(Value: X): Boolean;
iterator Preorder: X;
end;

implementation for BinaryTree[X].TreeNode is

constructor TreeNode(Value: X);
begin

Self.Value := Value;
end;

method Contains(Value: X): TreeNode;
begin
if Value.CompareTo(Self.Value) = 0 then
Result := Self
else if Value.CompareTo(Self.Value) < 0 then
if Left <> nil then
Result := Left.Contains(Value)
else
Result := nil
else if Right <> nil then
Result := Right.Contains(Value)
else
Result := nil;
end;

iterator Preorder: X;
begin
Result := Value;
Yield;
if Left <> nil then
for Result 1in Left.Preorder do Yield;
if Right <> nil then
for Result 1in Right.Preorder do Yield;
end;

implementation for BinaryTree[X] is

method Contains(Value: X): Boolean;

begin
Result := Root <> nil and Root.Contains(Value) <> nil;
end;
method Add(Value: X);
var
Parent, Current: TreeNode;
begin
Parent := nil;
Current := Root;
while Current <> nil and Value.CompareTo(Current.Value) <> 0 do
begin

Parent := Current;

Enter Freya

if Value.CompareTo(Current.Value) < O then
Current := Current.lLeft
else
Current := Current.Right;
end;
if Current = nil then
begin
Current := new TreeNode(Value);
if Parent = nil then
Root := Current
else if Value.CompareTo(Parent.Value) < 0 then
Parent.Left := Current
else
Parent.Right := Current;
end;
end;

iterator Preorder: X;
begin
if Root <> nil then
for Result 1in Root.Preorder do
Yield;
end;

end.

27

APPENDIX C: A TOP-DOWN PARSER FOR NUMERIC EXPRESSIONS

using System, System.IO;

namespace Freya.Examples.Parser;

public
Parser = class
protected
Lexer: Lexer := nil;

method Expression: Double;

method Term: Double;

method Factor: Double;
public

method Compile(Input: String): Double;
end;

private
Tokens = (Number, Plus, Minus, Times, Divide, LPar, RPar, Eof);

Lexer = class

public
constructor Lexer(Input: String);
property Token: Tokens; readonly;
property Value: Double; readonly;
method Next;

end;

implementation for Lexer is

var
Input: String;
Current: Integer;

constructor Lexer(Input: String);
begin
Self.Input := Input;
Self.Current := 0;
Self.Next;
end;

method Next;
begin
Value := 0;
while Current < Input.Length and
Char.IsWhiteSpace(Input, Current) do
Current++;
if Current >= Input.Length then
Token := Tokens.Eof

else
begin
case Input[Current] of
'0'..'9":
begin
Token := Tokens.Number;
repeat
Value := Value * 10 + Input[Current].Ord - '0'.Ord;
Current++;
until Current >= Input.Length or
Input[Current] < '0' or Input[Current] > '9';
end;
#0 : Token := Tokens.Eof;
'+': Token := Tokens.Plus;
'-': Token := Tokens.Minus;
'*': Token := Tokens.Times;
'/': Token := Tokens.Divide;
'(": Token := Tokens.LPar;
')': Token := Tokens.RPar;
else
raise new Exception('Invalid character: ' + Input[Current]);
end;
if Token not 1in [Tokens.Eof, Tokens.Number] then
Current++;

28

end;
end;

implementation for Parser is

method Compile(Input: String): Double;
begin
Lexer := new Lexer(Input);
try
Result := Expression;
if Lexer.Token <> Tokens.Eof then
raise new Exception('Invalid expression ending');
finally
Lexer := nil;
end;
end;

method Expression: Double;

begin
Result := Term;
var T := Lexer.Token;
while T 1in [Tokens.Plus, Tokens.Minus] do
begin
Lexer.Next;
if T = Tokens.Plus then
Result += Term
else
Result -= Term;
T := Lexer.Token;
end;
end;

method Term: Double;
begin
Result := Factor;
var T := Lexer.Token;
while T 1in [Tokens.Times, Tokens.Divide] do
begin
Lexer.Next;
if T = Tokens.Times then
Result *= Factor
else
Result /= Factor;
T := Lexer.Token;
end;
end;

method Factor: Double;
begin
if Lexer.Token = Tokens.Number then
begin
Result := Lexer.Value;
Lexer.Next;
end
else if Lexer.Token = Tokens.LPar then
begin
Lexer.Next;
Result := Expression;
if Lexer.Token <> Tokens.RPar then
raise new Exception('Right parenthesis expected');
Lexer.Next;
end
else
raise new Exception('Number or left parenthesis expected');
end;

implementation

method Main;

begin
with var P := new Parser do
Tloop
Console.Write('? ');
with var S := Console.ReadlLine do
try

if String.IsNul10rEmpty(S) then Exit;

Enter Freya

29

Enter Freya

var d := P.Compile(S);
Console.Write('= ');
Console.WriteLine(d);

except e: Exception do
Console.WriteLine(e.Message);

end;

end;
end;

end.

30

CONTENTS

THE DELPHI PASCAL HERITAGEcecuviitvietierieieesteeseesssessseasseesseesseesssssssesssesssesssesssesssessssssssssssenns 1
DIESIGN GOALS ..eeuvteitteeite et et ettesttesttesttessteesseesseessaesaeesssessseasseasseesseesseesssesssesnseansesnseesseesseesssesseans 1
THE ENTRY POINT: NO MORE PROGRAMScovteiuieiteeitieeteeenteereeeteesseesseeessessseesesssesssesssessssssssesseens 2
INAMESPACES ...vtetteitteetteetreeteeteesttessseseseasseasseasseesaesssesssesssesssesssessssesssesssesssesssesssessssssssssssssssessenns 3
TYPE DECLARATIONSveeuvieteesteetteseressseasseasseesseesseesssessssssseassesssesssessssesssssssessseessesssesssessssssssesssenns 4
CLASSES AND CLASS MEMBERScttiutteiititestteeiteestieestteesiteeseeesssteesaseessseessseesaseeesssesssesssseeesssees 5
VISIBILITY ...eeuvteteeetteetteeteeeteeeteeeteeetseesseesseeseaeseeesseesseeaseeaseanssessessseesssesseenssaseesssesaseesseenreenseenssensns 7
INSTANCE AND STATIC MEMBERS.......0cccviitierierteesteesieessreesseeseessessseesssesssesssessesssesssesssessssssssesssesns 7
IVIETHODSvvteutieeresereesseesseesseesseessessssessseasseesseesssesssesssesssesssesssssssssssssssssassessseesseessessssesssesssenssennsens 8
PROPERTIES AND EVENTSttecttettesttesereasteeseeseesseesseesssesssessessessseessessssesssessseessesssesssesssassssesssenns 9
CONSTRUCTORSuvvveeeuireeeeatrreeeaareeesassreesassseeesassseesasssseesasssssesssssseesassssesssssssessssssseesenssseessssssees 11
INSTANTIATION0eetveereereesteestresereeeseesseeseesseesssessseasseesseesssesssesssessseasseessessssesssesssesssessesssessseensns 12
LOCAL VARIABLE DECLARATIONScvteviesteerteeseresseaseasseesseesssesssesssessseessesssessssessssssseessesssesssesnsns 13
GENERICITY ..euttteutteeteeeeuteesteeetteeanteesaseeesaseesnseesaseeesaseesnsseesnsaesasseessseesnsaesasseesaseesnsseesnseesasseesnses 14
ITERATORSeeteeette ettt ettt eeteeett e et e eeveeaveeeteeeteeeteeeaeeeabeeabeesbaessessseesseesseerseeatsesssesaseeaseenseenseeseenns 15
EXCEPTIONS ...tiitiiittiettietteteesteestteetteetbeesveesteessaesssessseasseesseassaesssesssessseessessseesseesssesssesssesssesssessens 16
DETERMINISTIC DESTRUCTION AND BLOCK DECLARATIONSccuvtiviereereesseenseesenessneeseessessseenens 17
OPERATORS AND COMPOUND ASSIGNMENTSceiuveiurerreereesseesseesnesssesseesseesseesseesssesssesssessseensees 18
USER DEFINED OPERATORS AND CONVERSIONS.......ceitiiitieitieetieiereereeseesteesseesseessreesveesveessessssennns 20
ASSERTIONS ... cctteitteitreeteereesseesseesssessseasseasseasseasessssesssesssesssessessssssssesssesssessssessesssesssessssesssesssesns 20
INTERFACES AS CONTRACTS ...euvveiereeereareesseesseesseesseasseasseesseesssesssesssessseessessseessssssssssseessesssessssensns 22
CURRENT STATE OF FREYA IMPLEMENTATIONcoicttitteteeteesieesnesssesseesseesseesseesssesssessessseensees 24
APPENDIX A: FREYA RESERVED WORDSuuttiieiiiiteeriteeeenireeeessseeesssseesssssseessssssesessssseesssssseeenns 25
APPENDIX B: A SIMPLE SORTED BINARY TREE IN FREYAc.cooiiiiiiiiiniiiciecieereereesiee st 26
APPENDIX C: A TOP-DOWN PARSER FOR NUMERIC EXPRESSIONS......cccuvttieiirireeinreeeesireeeesnneeeens 28

31

	Enter Freya
	The Delphi Pascal heritage
	Design goals
	The entry point: no more programs
	Namespaces
	Type declarations
	Classes and class members
	Visibility
	Instance and static members
	Methods
	Properties and events
	Constructors
	Instantiation
	Local variable declarations
	Genericity
	Iterators
	Exceptions
	Deterministic destruction and block declarations
	Operators and compound assignments
	User defined operators and conversions
	Assertions
	Interfaces as contracts
	Current state of Freya implementation

	Appendix A: Freya reserved words
	Appendix B: A simple sorted binary tree
	Appendix C: A top-down parser for numeric expressions
	Contents

		2007-01-01T01:57:12+0100
	Madrid
	Ian Marteens
	Soy el autor de este documento

